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Quantum Phases and Connections 

J a n  S l a d k o w s k i  1 

Received April 14, 1992 

Quantum phases and possible reductions of adiabatic connections are discussed. 
It is argued that only holonomy groups have physical meaning in that context. 

Since the first recognition by Berry (1984) of the deep physical meaning 
of  the wave functions' phases in the adiabatic approximation, the quantum 
phases have attracted the attention of both physicists and chemists 
(Zwanziger et al., 1990). The analysis has been generalized to nonadiabatic 
and non-Abelian cases (Wilczek and Zee, 1984; Anandan and Aharonov, 
1988; Ralston, 1989; Anandan, 1988; Anandan and Stodolski, 1987). These 
phases can be described in terms of connections and their holonomy groups 
(Simon, 1983; Page, 1987; Kobayashi and Nomizu, 1969). In this paper we 
would like to point out that, in some sense, every quantum evolution is 
geometrical. 

Let us consider the Schr6dinger equation (we have put h = 1 for 
simplicity): 

0 
i - -  ~( t) = ~(( t)tp( t) (1) 
at 

This equation can be solved in terms of  the evolution operators U(t,  to) 
given by the equations 

0 
i - -  U(t,  to) = ~ ( t )  U(t,  to) (2a) 
Ot 

0 
- i - -  U( t, to)= U( t, to)~(  to) (2b) 

Oto 
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with the following initial condition: 

U(to, to)= 1 (2c) 

The solution to equation (2) has the form (Biatynicki-Birula et al., 1969) 

U(t, to)= T-exp[-i f'odr ~(r) ] 
(2d) 

- - -  1 +  E . a~-~ T ( ~ ( ~ 0 . . .  ~C(~-.)) 
n = 1 n ! d t  o to 

where T denotes the chronological ordering. It can be shown that the 
operators U(t, to) are unitary and fulfill 

U(t2, t l )U( t l ,  to)= U(t2, to) (3) 

Now, suppose that the quantum system depends on some (continuous) 
parameters a i yg(t) =- ~ ( t ,  a i). The SchriSdinger equation can still be solved 
in terms of  evolution operators, but now they depend on the parameters 
a i. If we suppose that the Hamiltonian depends on time t only through the 
parameters a i = a~(t), the solution to equations (2a) and (2b) will take the 
form 

U(t, to) = P exp - i  d~" ~(a~( r ) )  (4) 
tO 

where P denotes the path ordering. Let us notice that, in general, the 
condition U(to, to) = 1 cannot be fulfilled. Suppose the evolution operators 
form a group G at each point a i of  the parameter space. This group is 
defined by "evolutions" along loops at a ~. In some cases [e.g., when G is 
a Lie group dim C---2, C being the parameter space (Kobayashi and 
Nomizu, 1969)] the group G can be realized as a holonomy group of some 
connection on the parameter space C. The question is how and to what 
extent is such a connection related to the Hamiltonian ~ ?  To answer it, 
let us define the parallel transport operator (Dubrovin et al., 1986) of  the 
connection A: 

S(7, A )= P exp [ f'o ( d -  v~))  dz ] (5) 

where 3' is a path and 3~ denotes the tangent vector field to 7, and V~ the 
covariant differential along 3~ of the connection A. The parallel transport 
is defined by the differential equation 

dqJi( t) ~- aj~,( t)(?~( t)@J( t) (6) 
dt 



Quantum Phases and Connections 903 

i where aj~, denotes the coefficients (Kobayashi and Nomizu, 1969) of the 
connection A and C ( t ) =  (Cl(t),..., C'(t)) is the appropriate path in the 
parameter space. Now, 

d =-aj~(t)C (t) (7a) ~_~_ ~Tc(t) i " I, 

and 

i , / x  S(c, A) = P exp - a j , ( r ) c  (~-) dr (7b) 
to 

The crucial fact is that the element S(c, A ) o f  the structural group G 
does not depend on parametrization of the curve C. The evolution operator 
U(t, to) given by formula (4) usually depends on the parametrization (the 
dynamic phase). This means that, in general, quantum evolution cannot be 
described in a geometrical way. When the assumptions of adiabatic evolution 
are fulfilled, the evolution of a state ~ is governed by (Wilczek and Zee, 
1984; Anandan and Aharonov, 1988) 

~p(T)=(exp[-i fTw(t) dtl}U(C)~(O) (8) 

where U(C) describes the geometrical phase. This geometrical phase is 
often expressed in terms of the adiabatic connection: 

A,b,u~(~a ~ b )  (9) 

as a parallel transport (Simon, 1893) 

u( c) = P-exp (-fc  A~,6 ~ dt) ( 1 0 )  

We would like to stress that this connection has no apparent physical 
meaning: it may depend on the choice of representation. The presence of 
a U(n) connection may also suggest that there is an underlying U(n) gauge 
symmetry of the system. This is not so. Only the holonomy group is of 
physical importance. To show this, let us define the holonomy bundle of 
principal bundle P(M, G) with a connection A (Kobayashi and Nomizu, 
1969). Let p c P(M, G) and H(p) denote the set of points that can be joined 
with p by a horizontal curve. It can be proved that (Kobayashi and Nomizu, 
1969): 

1. H(p) is a reduced bundle with the holonomy group h(p) as a 
structure group. 

2. The connection A is reducible to a connection on H(p). 
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This means that, unless the appropriate holonomy group is U(n), the 
adiabatic holonomy manifold is "level." 

Example. Suppose that the parameter manifold M is paracompact 
connected, but not necessarily simply connected. Let F denote a flat connec- 
tion in P(M, G). Let p ~ P(M, G) and H(p) be the holonomy manifold 
through p. H(p) is a principal fiber bundle with the holonomy group hr(p)  
as a structure group. It can be proved that: 

1. hr(p)  is discrete. 
2. h~(p), the restricted holonomy group, is trivial. 
3. Parallel transport defines a homomorphism of 1rl(M, ~'(p)) onto 

hr(p). 

This example shows that we may have nontrivial geometrical phases even 
when the adiabatic connection is flat (cf. the Bohm-Aharonov effect). This 
also proves that the formula (41) in Zwanziger et al. (1990) is correct only 
in the case of a simply connected parameter manifold. This analysis can 
obviously be generalized to quantum phases of a more general type. 
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